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1 Introduction 
Spectra, the absorption or emission of light at characteristic 
wavelengths, have long been known to provide accurate finger- 
prints of molecular species. Spectroscopic analysis is standard 
for characterizing species and for identifying and quantifying 
molecules in complex mixtures. It also provides information on 
such things as temperature and isotopic abundances. We are 
particularly interested in these properties as a diagnostic for 
‘cool’ astronomical bodies. Astronomically, molecular spectra 
provide a unique handle on the physical conditions in environ- 
ments such as giant molecular clouds, planetary atmospheres, 
and cool stellar atmospheres. As a counter example infra red 
spectroscopy is widely used in the petroleum industry to monitor 
everything from the oxidation of oils in engines to the compo- 
sition of exhaust gases after combustion.’ 

The detailed information contained in the many transitions 
that characterize the spectrum of a molecule is a sensitive 
reflection of the underlying interactions within that molecule. 
Thus the rotational energy levels of a molecule are largely 
governed by the molecular geometry: microwave spectroscopy, 
the study of rotational transitions, has long provided the most 
accurate determination of molecular bond lengths. Conversely 
the vibrational energy levels of a molecule are determined by the 
ease with which the atoms can move relative to each other within 
the molecule: infra red spectroscopy, which covers the wave- 
lengths of the strongest vibrational transitions, provides, at least 
in principle, detailed and often very accurate information on 
how the atoms in a molecule interact. 

The interaction of atoms within a molecule is governed by the 
electronic potential energy surface of the system (see Section 2). 
Potential energy surfaces are important entities within chemistry 
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as they determine not only spectra, but also reaction dynamics, 
transport properties, and interactions in the liquid and solid 
state. Although all these properties are sensitive to the potential, 
spectroscopy is undoubtedly the most accurate source of infor- 
mation on the potential. Unfortunately, except for diatomic 
molecules, there is no general method of extracting potentials 
from spectroscopic data. This leads to an alternative strategy. 
Potentials constructed by any means, from first principles 
application of quantum mechanics to guess work, are tested by 
using them to generate spectra which can be compared with 
observation. If the agreement is unsatisfactory the potential can 
be adjusted and the calculation repeated. 

Recorded spectra, particularly for polyatomic molecules, are 
often very complicated. They can contain many thousands of 
lines each corresponding to transitions between unknown levels. 
The process of assigning such spectra involves ascribing degrees 
of vibrational and rotational excitation to both the initial and 
final levels involved in the transition. Often this is quite straight- 
forward once a few assignments have been made but the first 
assignments may involve inspired guesswork and can be greatly 
aided by calculations. Similarly predictions of where the transi- 
tions can be found greatly aid the search for a particular species. 

Calculations of molecular spectra are thus important for 
testing and developing potential energy surfaces, interpreting 
laboratory data, and predicting spectra. However, even for a 
three-atom molecule, such as water, at room temperature the 
spectrum can contain a very large number of transitions. The 
total absorption of light as a function of wavelength, which is 
called the opacity of the system, is an important property of 
many bodies including the Earth’s atmosphere. 

A detailed knowledge of the opacity of the atmosphere is 
required to model the greenhouse effect. The peak of the Sun’s 
radiation is at optical wavelengths to which the Earth’s atmos- 
phere is largely transparent. The Earth is cooler which means 
that it re-emits radiation at longer wavelengths - mainly in the 
infrared. If this emission passes through the atmosphere then the 
earth will lose heat; if the atmosphere absorbs the emission then 
this heat is retained. This is a fine balance which is dependent on 
the components of gases in the atmosphere. Although CO, is 
well known as a greenhouse gas, many other atmospheric trace 
species such as methane, Chloro-Fluoro-Carbons (CFCs) and 
their derivatives, actually have a much greater potential to act as 
greenhouse gases. The generation of the many transitions 
involved in synthesizing opacities for these species is naturally 
handled computationally. We are currently embarking on such a 
project focusing on the behaviour of cool stellar atmospheres. 

2 Potentials 
As mentioned above, potential energy surfaces form a common 
strand running through practically all areas of physical 
chemistry. Actually the very existence of these surfaces relies on 
an approximation, albeit one which usually is valid. 

Chemists generally consider molecules to be composed of 
electrons which are light and singly charged, and compound 
nuclei which are comparatively heavy (hydrogen is 1836 electron 
masses) and multiply charged. Given the large mass ratio, it is 
generally assumed that the electrons can relax instantaneously 
to any given nuclear geometry. It is within this framework, 
known as the Born-Oppenheimer approximation, that molecu- 
lar potential energy surfaces can be defined. The potential 
energy for a particular nuclear configuration, generally denoted 
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I/, is a function only of the relative nuclear coordinates as the 
electronic motion is assumed to be fully adjusted to this 
geometry. 

Potentials can be calculated using first principles quantum 
mechanics or ab  initio, by choosing a set of internuclear sepa- 
rations, solving the resulting Schrodinger equation for the 
electronic motion and repeating the procedure until a grid of 
points has been generated. These points must then be fitted to 
some continuous function to produce a full surface. Solution of 
the electronic Schrodinger equation is a formidable problem in 
its own right but one which has advanced rapidly with theoreti- 
cal developments and computer technology. It should be noted, 
however, that the generation of full ab  initio potential energy 
surfaces for polyatomic molecules remains computationally 
expensive. 

The traditional method of extracting potentials from 
observed spectra has been via force constants. These constants 
underpin a theory of vibrational motion which assumes the 
nuclei undergo only small amplitude motion. The force con- 
stants represent the derivatives of the potential at the equili- 
brium geometry of the molecule and as such give a very high 
order representation of the surface at one point rather than a 
global surface. There have been a number of suggestions as to 
which coordinates give the best extrapolation of the potential 
away from equilibrium. But no completely satisfactory solution 
exists. 

An alternative method of obtaining potentials from experi- 
ment has been to make some initial guess at a potential function 
which contains parameters that can be optimized by comparison 
with experimental data. This procedure places great emphasis 
on the development of computationally efficient procedures for 
calculating spectra as this is the slowest step in the process. The 
method was first extensively used for atom-diatom van der 
Waals complexes such H,-X and HCl-X (where X = He, Ne, 
Ar, Kr).273 These weakly bound systems have the advantage that 
the relatively stiff diatomic vibrational mode can be neglected. 
The other vibrational modes undergo large amplitude motions 
which are poorly represented as an expansion about equili- 
brium. More recently this method has been applied to chemi- 
cally bound systems such as ~ a t e r , ~ , ~  H,S,5 and HCN.6 

3 Diatomic Molecules 
Given a potential energy curve the calculation of rotation- 
vibration spectra for diatomic molecules is relatively straightfor- 
ward. For these systems the potential energy surface and hence 
also the vibrational wavefunction is one dimensional. This 
makes visualization of both these functions straightforward. 
Similarly the degree of vibrational excitation in a diatomic is 
given by the number of times the wavefunction passes through 
zero. These zero amplitude points are called nodes. 

A number of model potentials have been proposed for diato- 
mics. These include harmonic, Morse, and Lennard-Jones 6-1 2 
potentials. The first two of these are illustrated in Figure 1 .  

The harmonic potential is important not so much for its 
quantitative properties, but because most of the language used 
to interpret vibrational spectra is based upon it. Representing 
vibrational motion as harmonic oscillations is valid if the 
amplitude of these vibrational motions is small. In this approxi- 
mation vibrational energy levels are evenly spaced. However, 
the harmonic model neglects all possibility of molecular disso- 
ciation. This introduces so called anharmonic effects which 
usually cause the spacing between vibrational levels to decrease. 
Of course vibrational motion becomes increasingly large ampli- 
tude as dissociation is approached. 

The Morse potential, also shown in Figure 1, contains the 
basic properties of most diatomic molecules. It is strongly 
repulsive when the nuclei are close together, has a minimum at 
some intermediate distance and dissociates at long bond length. 
It is thus capable of representing basic anharmonic effects 
although for fully quantitative results more sophisticated func- 
tions are generally required. 

Figure I Potential energy curves, V(R) ,  for a diatomic with equilibrium 
bond length Re and dissociation energy D,. The blue curve is harmonic 
and the red curve is a Morse potential. Horizontal lines indicate 
vibrational energy levels. Both potentials have the same curvature 
(force constant) at R = Re. 

There are now many computational techniques for direct 
numerical integration of one-dimensional second-order differ- 
ential equations of type encountered for diatomic systems. This 
means that, given a potential, the rotation-vibration energy 
levels of a diatomic system can be routinely obtained. This is in 
contrast to polyatomic systems. 

4 Coordinate Systems for Polyatomic 

If a molecule consists of N nuclei then 3N coordinates are 
required to describe the position of these nuclei in space. The 
translational motion of the molecule can be represented by the 3 
coordinates of its centre-of-mass. Similarly for a non-linear 
molecule, rotational motion can be represented by a further 3 
coordinates. This leaves 3 N  - 6 ( 3 N  - 5 for a linear molecule) 
coordinates to represent the vibrational motion of the molecule. 
These are usually described as internal coordinates. 

For diatomics the bond length of the molecule is also the 
natural internal coordinate of the system. Even for triatomic 
systems, however, there is no unique choice of internal coordi- 
nates which gives a good picture for all systems. 

Traditionally so called normal coordinates have been used to 
represent the motions of polyatomic molecules. These coordi- 
nates are obtained as the solution of the multi-dimensional 
harmonic problem assuming that only harmonic terms are 
retained in the molecular potential. But these coordinates are 
unsatisfactory in many cases. This is because, given enough 
internal energy, all molecules undergo large amplitude vibratio- 
nal motion which is not well represented within the harmonic 
approximation. In particular there is a technical problem that 
with these coordinates it is all too possible to leave the true 
domain of the problem. This is illustrated by Figure 1 where it 
can be seen that for high energies the harmonic potential crosses 
R = 0 and allows the vibrational wavefunction to sample nega- 
tive bond lengths. 

Normal coordinates have now been largely abandoned for 
accurate calculations on small molecules. Instead internal coor- 
dinates defined in terms of internuclear separations and asso- 
ciated angles are usually employed. Figure 2 illustrates 3 of 
many such triatomic coordinate systems. 

The internuclear coordinates (rl, r 2 ,  r 3 ) ,  Figure 2a, would 
appear a good coordinate choice for a number of triatomic 
systems. This is particularly so for the molecule Hi, discussed 
below, whose equilibrium geometry is an equilateral triangle 
and for which it is thus desirable to have coordinates reflecting 
the high symmetry of the system. Unfortunately these coordi- 
nates are inconvenient to work with as their allowed ranges are 
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Figure 2 Internal coordinates for triatomic systems: (a) bond length 
coordinates (r lr  r 2 .  r 3 ) ;  (b) bond length ~ bond angle coordinates (rl, 
r 2 ,  a); (c) scattering coordinates ( r ,  R, 0). 

linked by a series of triangulation relationships of the form I r1 -. r3 I < y2 d r1  + r 3 .  This makes numerical integration 
very difficult and as a consequence these coordinates are gener- 
ally not used. 

Bond length-bond angle coordinates (r l ,  r 2 ,  a), Figure 2b, 
give a good representation of many triatomics such as H 2 0  and 
H2S. These coordinates have often been used for these mole- 
cules. Recently Radau coordinates, originally developed to 
study planetary motion about the Sun, have also been used for 
such systems. When the central atom is heavy, these coordinates 
are very similar to the bond length-bond angle coordinates but 
have the advantage that they yield a much simpler kinetic energy 
operator in the nuclear motion Hamiltonian. 

Scattering coordinates (Y, R,  B), Figure 2c, like Radau coordi- 
nates, also give a simple (diagonal) kinetic energy operator. 
These coordinates got their name from their use to represent 
atom-diatom collisions: the intersection of Y and R being at the 
diatom centre-of-mass. They are appropriate not only for 
weakly bound atomcliatom van der Waals complexes but also 
for a molecule like HCN as the coordinates can link the 
equilibrium structure of the two linear isomers HCN and HNC. 

Even if there is no coordinate system in which the vibrational 
motion is separable, it is still usual to talk about a molecule 
having 3N - 6 vibrational modes. Like the internal coordinates, 
how these modes are chosen is not unique. The process of 
partitioning the vibrational energy between the vibrational 
modes, known as assignment, will be discussed below. 

There are also many ways of defining the 3 coordinates that 
represent the overall rotational motion of the system. This is 
because these coordinate depend on how one fixes (‘embeds’) the 
x, y ,  and z axes to the molecule. Thus, for example, in the 
scattering coordinates of Figure 2c the z axis of the system is 
often embedded along either Y or R depending on what is most 
appropriate for the system. 

5 Hamiltonians 
The equations of motion for N interacting particles, or their 
quantum mechanical equivalent given by the Hamiltonian, can 
easily be written down. However, the removal of translational 
motion, combined with coordinate transformations to internal 
coordinates and a particular axis embedding means the Hamil- 
tonian itself must be transformed. Each time one defines a new 
set of internal coordinates or axis embedding it is necessary to 

construct a new Hamiltonian for the system. A general method 
for deriving these Hamiltonians has been developed by Sut- 
cliffe7 but its application is often algebraically messy. 

Unfortunate as this may seem, there is a more serious 
problem. The very process of defining internal coordinates and 
axis embeddings introduces geometries into the Hamiltonian 
where it is badly behaved. For example, these badly behaved 
geometries, or singularities, are often encountered when a 
molecule becomes linear. In this case the system only has 2 
instead of 3 rotational degrees of freedom and 3N - 5 instead of 
3N - 6 vibrational modes. Special care is thus required for any 
bent molecule which samples linear geometries. 

6 The Variational Principle 
In its simplest form the Raleigh-Ritz Variational Principle 
states that for a given Hamiltonian operator the energy of any 
approximate wavefunction will always be greater or equal to the 
lowest (ground state) energy of the system. This theorem can 
also be extended to give upper bounds for the energy of excited 
states provided that the trial wavefunctions obey certain simple 
constraints. * 

The Variational Principle has been a rock upon which much 
of quantum chemistry has been founded. It allows trial wave- 
functions to be improved systematically with the best function 
being given unambiguously by the function with the lowest 
energy. Particularly powerful in variational calculations are 
basis functions. These allow the trial wavefunction to be 
expanded as linear combination of suitable functions: 

The coefficients, given by the vector c,  can be varied until the best 
trial wavefunction is obtained. This procedure can be written in 
terms of matrices and is thus particularly well suited to computer 
implementations. These (‘secular’) matrices are diagonalized to 
yield the c’s as eigenvectors and energies as eigenvalues. 

In the secular matrix method, which is commonly used in all 
branches of quantum chemistry,* matrix elements are given by 

In this expression, His the secular matrix, fi the Hamiltonian for 
the system and the 4’s are the basis functions. The integral runs 
over all space with d7 being the appropriate volume element. 
Usually at least some of the integrals involved in this expression 
have to be evaluated using numerical quadrature. Provided the 
matrix elements are real, the secular matrix is symmetric (i.e. 

For vibrational problems suitable basis functions include 
solutions of the harmonic oscillator and Morse problems dis- 
cussed in Section 3. The basis sets required to give a complete 
representation of the vibrational motion are always infinite. 
One’s aim is therefore to make a judicious choice of functions so 
that only a few are required to give a good representation of the 
wavefunction. Convergence is reached when the use of addi- 
tional functions only leads to an insignificant lowering of the 
energy. 

For rotational degrees of freedom the situation is simpler. For 
a given rotational quantum number, J ,  it is only necessary to 
have (2J + 1) functions to represent the rotational wavefunction 
fully. These functions, known as Wigner rotation rna t r ice~ ,~  can 
thus be used to expand any rotational problem and their use is 
universal. 

For triatomics, variational calculations performed using basis 
sets give a computer time requirement which is almost always 
determined by the size of the secular matrix that needs diagona- 
lizing. A technique which has proved highly successful in 
molecular vibration-rotation calculations is the application of 
the Variational Principle in several steps. In such procedures a 
problem of reduced dimension is solved using a basis set 
expansion and the solutions of this problem used as the basis for 

H .  . = H .  .). 
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a higher dimensional problem. If the reduced problem is well 
chosen then only a minority of its solutions are needed to obtain 
converged results for the full problem. This can lead to massive 
savings in computer time. Such methods have allowed the 
solution of many problems which would otherwise be beyond 
the scope of current computers. 

7 Molecular Properties 
The most obvious results obtained from solving the vibration- 
rotation problem are the (approximate) wavefunction of the 
system and its associated energy levels. However, quantum 
mechanics tells us that with the wavefunction we can calculate 
all other knowable properties of the system. Of particular 
interest in this context are the intensities of the transitions 
between the various states of the system. 

Most common transitions which involve absorbing or emit- 
ting light are driven by dipoles. Thus the intensity of a pure 
rotational transition is proportional to the square of the perma- 
nent dipole of the molecule. For vibrational transitions the 
important property is the change in the dipole moment in the 
vibrational coordinate being excited. In the harmonic model of 
molecular vibrations this is simply given by the derivative of the 
dipole at the equilibrium geometry of the molecule. However, 
more accurate calculations require a knowledge of the dipole as 
a function of the internal coordinates of the molecule, as well as 
the wavefunction of the initial and final state. In fact, because the 
dipole is a vector, 3 surfaces (2 for planar molecules such as 
triatomics) are required. 

Transition dipoles not only give the strength of individual 
absorption or emission features, they can also be used to give 
fluorescence lifetimes of excited states. (Fluorescence lifetime is 
the average length of time an excited state will survive before 
decaying to a lower level by the spontaneous emission of a 
photon.) 

Dipole surfaces can also be used to give vibrationally resolved 
dipole moments. Similarly any other property of the molecule 
which is geometry dependent, such as bond lengths, rotational 
constants, or polarizabilities, can be obtained for different states 
of the system by using the wavefunction to do the appropriate 
average. 

The wavefunction of the system can always be labelled by the 
total angular momentum of the system, J ,  as this is a constant of 
motion. However it is usual to label molecules by the number of 
quanta of vibrational excitation in each vibrational mode of the 
system. Such labelling is often based on a harmonic model of the 
system and is always approximate. The process of attaching 
these labels is called assignment. Assigning levels is important as 
a wealth of detailed understanding of how systems behave has 
been developed in terms of these assignments. Furthermore, as 
experiments never record all transitions for a system, assign- 
ments are crucial in any comparison between theory and 
experiment. 

Usually low-lying levels can be assigned without difficulty 
either by studying energy patterns or by using the coefficients in 
the basis set expansion. For higher-lying levels making assign- 
ments can be very much trickier. The density of vibrational 
states increases with energy, making energy differences unreli- 
able, and individual states may no longer be dominated by a 
single basis function. 

Another technique for making assignments, used extensively 
by us, is visual inspection of the wavefunction. This is normally 
achieved by making contour plots of the wavefunction or cuts 
through the wavefunction - see Figures 3 and 4. States that can 
easily be assigned are characterized by nodes in the wavefunc- 
tion which give a simple grid pattern; some examples are given in 
Figures 3a and 4a. For higher-lying states there may be no 
assignable nodal structure. This may be because inappropriate 
coordinates have been used for preparing the contour plots or 
because the state may be inherently unassignable. 

Unassignable states can usually be associated with energy 
regions for which classical solutions of the same problem are 
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Figure 3 Contour plots of the wavefunction of 8 vibrational states of 
LiCN: (a) low-lying states, (b) highly excited states. The plots are in 
scattering coordinates with the CN bond length, r ,  frozen at its 
equilibrium value. 0 = 180" for linear LiNC and 0" for linear LiCN. 
Solid lines enclose regions where the wavefunction is positive and 
dashed lines regions of negative amplitude. Nodal planes occur where 
the wavefunction has zero amplitude. The outer dotted curves repre- 
sent the limits of the classically accessible potential for each state ~ in 
quantum mechanics the wavefunction can tunnel into this region. 

(After J. R. Henderson and J. Tennyson, Mol. Phys., 1990,69, 639.) 

chaotic. How classical chaos manifests itself in quanta1 systems 
remains a controversial subject and is beyond the scope of this 
article. However, one property that is observed in both mecha- 
nics is that even above the transition to classical chaos, some 
assignable solutions are found. Figure 4b depicts wavefunctions 
of the H i  molecular ion whose energies are well above the 
classical transition to chaos. For three states the wavefunction 
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Figure 4 Contour plots of the wavefunction 8 vibrational states of Hi: 
(a) low-lying states; (b) highly excited states. The plots are in scatter- 
ing coordinates with 8 frozen at 90". The contours are as for Figure 3 .  

(After J. R. Henderson and J .  Tennyson, Chem. Phys. Lett., 1990, 173, 
133.) 

appears irregular. State number 150 has a clearly defined nodal 
structure spread along a half horseshoe shape - and is called a 
horseshoe state. O 

The energy levels of the system can also be used to give other 
properties of the system. The most obvious of these is the 
partition function, the factor which normalizes the Boltzmann 
distribution of molecules into particular states. The partition 
function is needed if one wants to synthesize spectra as a 
function of temperature. 

8 Sample Results 
Variational calculations have been performed on many tri- 
atomic and some tetratomic molecules. We choose a few of these 
to give a flavour of what can be achieved. 

8.1 H:: from Jupiter to Chaos 
Perhaps the most exciting project that we have been involved in 
concerns the fundamental molecular ion Hi.  This seemingly 
simple molecule consists of 2 electrons and 3 protons. Its 
relatively simple electronic structure means that potential 
energy surfaces for this molecule can be calculated more accu- 
rately by using first principles quantum mechanics', than by 
analysing experimental data. This situation is probably unique 
for a polyatomic. 

H i  is rapidly formed when H, is ionized by the exothermic 
reaction 

H, + H:+Hl+ H ( 3 )  

As H, is the most abundant molecule in the universe, there are 
many astronomical situations where Hf is expected, although it 
remains largely unobserved. Similarly H i  is easily formed in the 
laboratory using a hydrogen discharge. 
Hf is an equilateral triangle in its equilibrium geometry. 

However, because of its light nuclei, H i  undergoes large ampli- 
tude vibrational motion. We have performed a series of variatio- 
nal calculations on this molecule in an attempt to aid both 
laboratory assignment of the complicated infra red spectra of 
this molecule and its astronomical detection. 

These calculations took a new significance following obser- 
vations of Jupiter by Drossart et aZ.13 These workers were 
studying a known hot region near Jupiter's south pole. In 
particular they were looking for very weak transitions due to 
molecular hydrogen. They observed these lines but at the same 
time saw 28 other, unexpected, transitions which they were 
unable to explain. It transpired that a spectrum like this had 
been observed at the Herzberg Institute of Astrophysics in 
Ottawa but only assigned as a result of these o b s e r ~ a t i o n s . ~ ~  
Because it was thought that the experimental spectrum was 
probably due to Hf our calculations were enlisted. 

Figure 5 gives a comparison of our calculated spectrum and 
that observed by Drossart et aZ. Note that the observed line at 
4721 cm-' is due to H,. The agreement is striking. Our 
calculations match the observed lines positions to within about 
0.02%. There are a number of surprising aspects of this first 
extraterrestrial observation of H i .  The actual transitions involve 
jumps of two vibrational quanta. Conventional wisdom is that 
such transitions should be very weak, but the floppiness of H i  
makes the two-quanta transitions nearly as strong as the funda- 
mental or one-quantum transition, which has since also been 
observed in Jupiter.l Another surprising outcome of this 
observation was that the observed spectrum could only be 
modelled by H i  with a temperature in the region of 1000 K. This 
is a high temperature for a planet whose body is at about 200 K. 

The observation of H i  in Jupiter has stimulated a very active 
area of astronomical research studying H i  in Jupiter and 
elsewhere. This will be the subject of another article by us in this 
journal. 

While the electronic properties of H i  may be fairly simple, its 
nuclear dynamics are extremely rich. Attention was focused on 
this by the observation of a very unusual spectrum by Carr- 
ington and co-workers. This experiment prepared H i  in a 
discharge and probed the resulting ions with an infra redlaser. A 
mass spectrometer was then used to monitor if any protons were 
produced by photodissociation. 

Photodissociation is a common technique for investigating 
molecular systems and the resulting spectra are often quasi- 
continuous with maybe rather lumpy features. The spectrum 
obtained by Carrington and co-workers was extraordinary for 
two reasons. The energy of the laser was only a small fraction of 
that required to dissociate the ground state of the Hf and the 
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Figure 5 Observed (blue) and simulated (red) emission spectrum from 
Jupiter's southern polar region. The labels identify the rotational 
levels of H i  involved: R(J) is a J + 1 t J transition. 

(Reproduced by permission from Chem. Br., 1990,26, 1069.) 

spectrum, taken over a small range of wavelengths, contained 
over 26 000 narrows lines. 

This spectrum, occurring as it does right at the dissociation 
limit of the molecule, presents a formidable challenge to theory. 
Further analysis of the experiments showed that the protons 
generally left the molecule with more energy than they got from 
the laser. This could only be rationalized by placing both the 
initial and final state of the system above the dissociation limit of 
the molecule. Such quasibound states, physicists call them shape 
resonances, are well known although such a profusion of them is 
unusual. They result from rotational excitation of the molecule 
which causes the potential to be distorted by a hump or barrier 
to dissociation. The molecule can get trapped behind this hump, 
but because of quantum mechanical tunnelling, the state only 
remains trapped for a finite time. The Uncertainty Principle 
means that states which are trapped only for a short time have 
large uncertainty in their energy and appear as broad lines in any 
spectrum. All the observed Hf lines are narrow suggesting that 
they are associated with long-lived states. 

The dissociation spectrum of Hf as observed has little struc- 
ture. However, if a spectrum is synthesized by broadening the 
observed lines, then the spectrum collapses to 4 regularly spaced 
features. This intriguing piece of information has been a chal- 
lenge to theoreticians. Classical analysis of the H i  system 
suggests that the molecule is almost totally chaotic once the 
molecule has chance to become linear. Such geometries become 
accessible at energies about one third of the way to dissociation. 
In chaotic systems it is usual for some solutions ('trajectories') to 
behave in a regular or quasiperiodic fashion. Classical mechani- 
cians argue that the structure in the H i  spectrum is caused by 
some underlying regular motion with the many individual 
transitions being a reflection of the chaotic nature of the system. 
This explanation leaves two questions. What is the underlying 
regular motion and how does the fact that Hf obeys quantum 
and not classical mechanics alter this picture? 

One proposal for the regular motion is that the atoms undergo 
a 'horseshoe' motion. O In scattering coordinates, see Figure 2c, 
this motion can be described in terms of the coupled motions of r 

and R with 8 fixed at 90". As R goes towards zero, r becomes large 
as the other two atoms move apart to allow the central atom 
through. As R moves away from zero, r decreases again. Plotting 
this motion as a function of r against R, where R has the range 
- co + + co, gives a horseshoe shape. 

Quantum mechanical calculations on these high energy 
regions are very difficult, not least because the density of states 
rises rapidly with energy. However modern supercomputers and 
the adaptation of the variational procedures described above to 
use methods based on finite elements rather than basis functions 
have allowed such calculations to be attempted. So, for example, 
a quantal calculation has recently estimated the position of every 
bound vibrational state of Hi. Figure 4 shows wavefunctions 
produced by these calculations. The states of H i  are plotted in 
scattering coordinates with 8 fixed at 90". In these plots R has the 
range 0- + co. State 150 has a (half) horseshoe-like shape and is 
regular in the sense that nodes can easily be counted. The other 
states in Figure 4b, which are typical of many states in the high 
energy region, have irregular structures. 

Although there is clear evidence for horseshoe states in the 
quantum mechanical calculations, their exact role in the H i  
dissociation spectrum remains controversial. So far the quantal 
calculations have not been sophisticated enough to generate 
actual spectra: in particular no-one has managed to study the 
effect of rotational excitation on the high-lying states. A decade 
after the first infra red photodissociation spectrum of H i  was 
recorded there is still clearly some way to go before it is fully 
understood. 

8.2 Van der Waals Complexes: Ar-N, 
Van der Waals bonding is the weak attraction which results from 
charge clouds adjusting to each others instantaneous fluctua- 
tions. It is the weakest of the chemical bonds and thus van der 
Waals molecules are only very weakly bound. 

Van der Waals complexes are thus aggregates of stable, often 
closed shell, molecules. The most studied triatomic van der 
Waals systems are the complexes formed between the Noble 
gases (He, Ne, Ar . . . .) and diatomics such as H,, HF, HC1, and 
N,. These systems have been prototypical in the development of 
variational methods. This is because their flat potential energy 
surfaces mean that the concept of vibrational motion as a (small) 
displacement from an equilibrium geometry is unhelpful. Inter- 
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nal coordinates, particularly scattering coordinates, have thus 
been used for some time for van der Waals complexes. 

As mentioned earlier, the wealth of experimental data on 
certain van der Waals systems has meant that empirical poten- 
tial energy surfaces have been derived for a number of complexes 
by performing cycles of calculation which involve guessing the 
surface, calculating the transition frequencies predicted by the 
surface, comparing with experiment, and repeating the pro- 
cedure until a satisfactory surface is p r ~ d u c e d . ~  Recently an 
attempt has been to use a similar procedure to generate a dipole 
surface for the Ar-N, complex.'* 

For Ar-N, the experimental spectrum was obtained in the 
infra redby using wavelengths in the region of the N, vibrational 
fundamental.' As excitation of the vibrational mode of isolated 
N, is forbidden, this experiment is sensitive to those N,'s which 
are part of a complex. Furthermore the transitions do not occur 
exactly at the frequency of the forbidden N, transitions because 
vibrational modes of the van der Waals complex can also be 
excited. The spectrum thus has several features, all of which are 
superimposed on a broad continuous background due to pres- 
sure broadening. Pressure broadening is the result of using 
relatively high pressures to produce the van der Waals com- 
plexes meaning that the molecules in the experimental cell can no 
longer be considered as isolated. 

The experiments on Ar-N, were performed at liquid nitrogen 
temperatures of about 77 K. For a van der Waals complex this is 
hot and means that for Ar-N, all levels are thermally occupied. 
The result is that instead of consisting of a series of discrete lines, 
the experimental spectrum comprises a number of features each 
containing many transitions. Indeed the calculations found that 
the strongest individual transitions were ten times weaker than 
the features in the experiment. It was thus necessary to consider 
some 15 000 transitions in synthesizing the spectrum. These were 
obtained by calculating all vibration-rotation states of the 
system which lie below the dissociation limit of the complex. 

Figure 6 compares the calculated and experimental spectra for 
the Ar-N, complex. The agreement is not spectacular but the 
comparison contains a wealth of information about the poten- 
tial used for the calculations and the interpretation of the 
experiment. For instance, the broad shoulder in the calculated 
spectrum 7 cm- from the N, fundamental frequency (taken at 
the origin on the figure) is almost certainly a genuine feature 
which was lost in the process of removing the background due to 
pressure broadening from the observed spectrum. Conversely, 
the misalignment of the peaks marked S(0) is due to the potential 
energy surface used in the calculation. It would appear the 
potential for the Ar to move about the N, was not flat enough in 
the low-energy region. It will also be noticed that the observed 
spectrum has a much greater extent than the calculated one. This 

Figure 6 Observed (blue) and simulated (red) infra red absorbtion 
spectrum of the Ar-N, van der Wads complex. Both spectra are for a 
temperature of 77 K and a density of 1.7 amagat. 

(After Garcia Allyon et al., Mol. Phys., 1990, 71, 1043.) 

is because the calculations only considered truly bound states of 
the system, whereas the higher frequency features are due to 
quasibound states trapped behind rotational humps in the 
potential. 

8.3 Potential Energy Barriers: Isomerization in LiCN 
Many molecules are found to have more than one stable 
structure. These different structures are called isomers and in 
general become more common as the number of atoms in a 
molecule increases since this also increases the number of 
candidate structures. Some triatomic systems exist as different 
isomers. For example hydrogen cyanide is found with two linear 
structures. Indeed, an unresolved astrophysical problem is why 
HNC is almost as abundant in interstellar clouds as its much 
more stable HCN isomer. 

Quantum chemical calculations have predicted that both 
linear forms of LiCN are also stable.20 However, in this case the 
LiNC isocyanide is predicted to be the more stable form. This 
has been confirmed by microwave experiments., ' Although 
HCN has been the subject of many variational calculations ( e g .  
ref. 6), LiCN is actually easier to work on. This is because in 
HCN the H-CN stretching mode is at a similar frequency to the 
C-N stretch. The heavier Li atom means that the high fre- 
quency C-N mode is approximately decoupled from the other 
vibrational modes in the system. Furthermore, the theoretical 
barrier between the two linear isomers of LiCN is small, only 
3500 cm- ' (0.4 eV) or less than 5 quanta of the Li-CN stretch. 
As the LiCN is heavily ionic, the potential can be thought of as 
being Li + orbiting CN- with only a secondary sensitivity to the 
actual orientation of the CN- .  

LiCN has thus been the subject of a series of calculations all of 
which have frozen the CN motion. Within this model, the 6Yh 
state of the system is already in the region of the barrier. As 
recent calculations22 have obtained wavefunctions for the low- 
est 900 states of the system, the behaviour of the system below 
the barrier, in the region of the barrier, and well above the 
barrier can be studied. 

Plots of low-lying and high-lying states of LiCN are given in 
Figure 3. The lower states can all be easily assigned by their 
nodal patterns. However, as more energy is put into the Li-CN 
bending motion, the states become increasingly irregular. It is 
the bending motion which samples the isomerization barrier. 
The potential in this region is of course highly anharmonic and 
thus the assignments, based as they are on a harmonic picture of 
molecular vibrations, rapidly break down. 

Above the barrier to isomerization an increasing proportion 
of states (more than 90% above state 400) have a highly irregular 
appearance and cannot be assigned. However, in this region 
there are series of states with clear nodal patterns. Perhaps the 
most pronounced of these series is the overtones of the isocya- 
nide Li-CN stretch. These states go throughout the region 
studied. Thus state 400, depicted in Figure 3b, has 12 quanta of 
stretch. 

An interesting and topical question is how the many irregular 
states in a system such as LiCN would manifest themselves in 
observed spectra. Calculations of the conventional absorption 
spectrum of the molecule in its ground vibrational states show 
few unusual features. This is because the spectra are dominated 
by excitations of the Li-NC stretching mode. The ionic nature 
of the molecule means that this mode has a large dipole which 
leads to very intense transitions. Similar behaviour has been 
observed experimentally for HCN. 

- A T ~  rak-aiing-pi-cxure 'dT-ihe'.bekvioakuT rne ekcfteti $rates 
of LiCN is obtained by considering their fluorescence life- 
t i m e ~ . , ~  This is illustrated in Figure 7 which has an interesting 
structure: the assigned ('LiNC regular') states fall into a number 
of series. One series, for which the lifetime decreases with 
excitation, all have no stretching excitation and increasing 
quanta of bending energy. Conversely the other series are for 1 , 
2, 3, and 4 quanta of stretching excitation respectively, with the 
lifetime getting shorter as the degree of stretching excitation 
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Figure 7 Fluorescence lifetime of excited vibrational states of LiNC with 
J = 0. Ei is the energy of each state relative to the LiNC ground states. 
Assignments as ‘regular’ or ‘chaotic’ were made by analysing contour 
plots of the wavefunctions such as those given in Figure 3. 

(Reproduced by permission from Chern. Phys, 1986, 104, 399.) 

increases. Within each series, increasing the bending excitation 
leads to slightly longer lifetimes. 

All this can be understood by remembering that because of its 
ionic nature the transitions in LiCN are very strong for stretch- 
ing states. Thus any excited state which can do so decays rapidly 
by losing a quantum of stretch. Conversely decaying by losing 
one or more quanta of bending excitation is slow. However, as 
the molecule is excited there is an increase in bend-stretch 
mixing. This means that the higher bending states take on a 
small but increasing stretch character which shortens their 
lifetime whereas increasing the bending character of the stretch 
excited states lengthens their lifetime. 

As the states become more excited the bend-stretch interac- 
tion becomes stronger. This leads to a host of states that have 
distorted wavefunctions which defy assignment. It also leads to a 
situation where all states have rather similar fluorescence life- 
times as represented by the clump of unassigned (‘chaotic’) 
states in Figure 7. 

Analysis of classical calculations on LiCN shows that bending 
excitation is the main cause of chaotic behaviour in the system.24 
Indeed regular (‘quasiperiodic’) stretching states can be found 
over a wide energy range, possibly all the way to dissociation, 
provided that the bending excitation is kept low. Similar analysis 
of the quantal results24 show again that regular stretching states 
can be found over an extensive energy range, see state 400 of 
Figure 4b for example. 

A direct quantitative comparison of classical and quantal 
results is given by Figure 8. In this figure the energy is appor- 
tioned to either stretch or bending. The resulting state/trajectory 
is then assigned as either regular/quasiperiodic or irregular/ 
chaotic and the appropriate entry made. It is clear that there is a 
wide measure of agreement between the predictions in the two 
mechanics although the onset of irregular quantum states occurs 
at a slightly higher threshold energy. This behaviour has been 
called ‘quantum sluggishness’. 

9 Conclusions 
In this article we have given a brief review of how one performs 
vibration-rotation calculations on small molecules. We have 
tried to explain why these calculations are important and to give 
the scope of problems that can be addressed with these calcula- 
tions by the discussion of some sample results. It will be noted 
that all the problems discussed are for triatomic molecules. In 
two of these cases the calculations involved finding all the bound 
states of the system - all the vibrational states of HS and all the 
vibrational and rotational states of Ar-N,. These and most 
other variational calculations on triatomics can now be per- 
formed so accurately that the major source of error is the 

Figure 8 Comparison of the quasiperiodic (blank) - chaotic classical 
domain (hatched in blue) with ‘regular’ - ‘chaotic’ quantum states 
(red) for LiNC. Classical results were obtained by starting 50 trajec- 
tories with the energy indicated in the stretch and bend coordinates. 
Quanta1 results were obtained by partitioning energy between stretch- 
ing and bending modes. This cannot be done for most ‘chaotic’ states 
which therefore do not appear on the figure. 

(After J. Tennyson and S .  C. Farantos, Chem. Phys., 1985,93,237.) 

potential energy surface used for the calculation. This is still true 
for the most accurate vibration-rotation calculations available, 
viz. our own on Hi,  which reproduce a range of experimental 
data with an error of about 1 part in 5000. 

The advent of variational vibration-rotation calculations has 
really opened the way for serious and systematic theoretical 
analysis of the highly-excited states triatomic systems. Such 
states, as implied by the discussion of the H i  and LiCN 
problems, are often found at energies where classically one finds 
chaos. What the exact consequences of this are for quantum 
mechanical wavefunctions or indeed spectroscopy is still a 
matter for considerable speculation. At least theoreticians now 
have the necessary tools in their armoury to tackle such 
problems. 

Our discussion has concentrated almost exclusively on tri- 
atomic molecules. This does not imply that larger molecules are 
without interest. Quite the contrary, these systems are extremely 
challenging. A number of variational calculations on tetratomic 
systems have now been performed. The computational aspects 
of the tetratomic problem are rather different than for 
triatomics. 

Although it has not been considered here, in order to form the 
matrix elements necessary to construct the secular matrix, it is 
necessary to integrate over the coordinates of the problem. If 
any arbitrary potential function is to be used, this integration 
must be done numerically in 3N - 6 dimensions. It turns out 
that for triatomic systems ( N  = 3) this integration is much less 
computationally demanding than the later step in the calcula- 
tion of diagonalizing the secular matrix. For tetratomic system 
( N  = 4), 6D numerical integration must be performed. As the 
number of integration points increases roughly as M 3 N - 6 ,  even 
a modest number of points in each dimension such as M = 10 
leads to a thousandfold increase in computer time requirements. 
It is clear that any serious advance in the area of calculating 
spectra for larger molecules using variational procedures must 
somehow first break this integration bottleneck. 
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